1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
| import os import pandas as pd
from torch.utils.data import Dataset from torch.utils.data import DataLoader from PIL import Image from torchvision import transforms from sklearn.model_selection import train_test_split
import torch.nn as nn import torch.optim as optim import torchvision.models as models
from collections import Counter
from tqdm import tqdm
import torch
import random import numpy as np
import hashlib
class KneeXRayDataset(Dataset): def __init__(self, dataframe, transform=None, cache_size=2000): self.df = dataframe self.transform = transform self.cache={} self.cache_size=cache_size
def __len__(self): return len(self.df)
def __getitem__(self, idx): if idx in self.cache: return self.cache[idx]
row = self.df.iloc[idx]
image = Image.open(row['img_path']).convert('RGB') label = int(row['KL'][0])
image = self.transform(image)
result=(image, label)
if len(self.cache) < self.cache_size: self.cache[idx] = result
return result
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(f'device:{device}')
seed=42 random.seed(seed); np.random.seed(seed); torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed)
exps={'MedicalExpert-I','MedicalExpert-II'} KL_levels={'0Normal','1Doubtful','2Mild','3Moderate','4Severe'}
img_exp_KLs=[] for root, dirs, files in os.walk(f'.{os.sep}Digital Knee X-ray Images'): for name in files: if name.endswith('.png'): path_parts=set(root.split(os.sep)) img_path=os.path.join(root, name) img_exp_KL=(img_path,(path_parts&exps).pop(),(path_parts&KL_levels).pop()) img_exp_KLs.append(img_exp_KL)
dataset_df = pd.DataFrame(img_exp_KLs,columns=['img_path','exp','KL'])
dataset_df.sort_values(by='img_path',inplace=True)
dataset_df['filename'] = dataset_df['img_path'].str.split(os.sep).str[-1] dataset_df_unique = dataset_df.drop_duplicates(subset=['KL','filename']).reset_index(drop=True)
data_transform_train = transforms.Compose([ transforms.Resize((224, 224)), transforms.RandomHorizontalFlip(), transforms.RandomRotation(15), transforms.ColorJitter(brightness=0.2, contrast=0.2), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ])
data_transform_val = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ])
X = dataset_df_unique y = dataset_df_unique['KL']
X_train_val, X_test, y_train_val, y_test = train_test_split( X, y, test_size=0.2, random_state=seed, stratify=y)
X_train, X_val, y_train, y_val = train_test_split( X_train_val, y_train_val, test_size=0.25, random_state=seed, stratify=y_train_val) class_counts=Counter(y_train) all_counts=len(y_train) class_weights={cls:all_counts/cnt for cls,cnt in class_counts.items()} class_weights=torch.tensor(list(class_weights.values()),dtype=torch.float32).to(device)
train_dataset = KneeXRayDataset(dataframe=X_train, transform=data_transform_train) val_dataset = KneeXRayDataset(dataframe=X_val, transform=data_transform_val) test_dataset = KneeXRayDataset(dataframe=X_test, transform=data_transform_val)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4,pin_memory=True,persistent_workers=True) val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False, num_workers=4,pin_memory=True,persistent_workers=True) test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
train_dataset_hash=hashlib.md5(''.join(X_train['filename'].to_list()).encode('utf-8')).hexdigest() val_dataset_hash=hashlib.md5(''.join(X_val['filename'].to_list()).encode('utf-8')).hexdigest()
print(f'train_dataset_hash:{train_dataset_hash},val_dataset_hash:{val_dataset_hash}')
model=models.resnet50(pretrained=True) num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, 5)
save_epoch=100 latest_model_path=f'.{os.sep}models{os.sep}model_{train_dataset_hash}_epoch{save_epoch}.pth' while(os.path.exists(f'.{os.sep}models{os.sep}model_{train_dataset_hash}_epoch{save_epoch}.pth')): latest_model_path=f'.{os.sep}models{os.sep}model_{train_dataset_hash}_epoch{save_epoch}.pth' save_epoch+=100
if os.path.exists(latest_model_path): model.load_state_dict(torch.load(latest_model_path,map_location=device)) save_epoch-=100 print(f'Loaded latest model from {latest_model_path}') else: save_epoch=1
model.to(device)
criterion = nn.CrossEntropyLoss(weight=class_weights)
optimizer = optim.Adam(model.parameters(), lr=1e-5, weight_decay=1e-4)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=10, factor=0.5, min_lr=1e-7)
num_epochs = 2000
print(f'Training for {num_epochs} epochs')
best_val_loss=float('inf')
early_stopping_patience = 50 patience_counter = 0
for epoch in range(save_epoch,num_epochs+save_epoch+1): model.train() running_loss = 0.0 for inputs, labels in tqdm(train_loader, desc=f'Epoch {epoch}/{num_epochs}'): inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item()
model.eval() val_loss=0.0 correct = 0 total = 0 with torch.no_grad(): for inputs, labels in tqdm(val_loader, desc=f'Epoch {epoch}/{num_epochs}'): inputs, labels = inputs.to(device), labels.to(device) outputs = model(inputs) val_loss += criterion(outputs, labels).item()
_, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() epoch_val_loss = val_loss/len(val_loader)
scheduler.step(epoch_val_loss)
print(f"Epoch {epoch}/{num_epochs}, Loss: {running_loss/len(train_loader)}, Val Loss: {epoch_val_loss}, Val Accuracy: {100*correct/total}%, lr: {optimizer.param_groups[0]['lr']}") with open(f'.{os.sep}models{os.sep}best_model_{train_dataset_hash}_on_{val_dataset_hash}.log','a') as f: f.write(f"epoch:{epoch},train_loss:{running_loss/len(train_loader)},val_loss:{epoch_val_loss},val_acc:{100*correct/total}%,lr:{optimizer.param_groups[0]['lr']}\n")
if (epoch) % 100 == 0: torch.save(model.state_dict(), f'.{os.sep}models{os.sep}model_{train_dataset_hash}_epoch{epoch}.pth')
if epoch_val_loss < best_val_loss: best_val_loss = epoch_val_loss torch.save(model.state_dict(), f'.{os.sep}models{os.sep}best_model_{train_dataset_hash}_on_{val_dataset_hash}.pth') with open(f'.{os.sep}models{os.sep}best_model_{train_dataset_hash}_on_{val_dataset_hash}.log','a') as f: f.write(f'epoch:{epoch},saved best model\n') patience_counter=0 else: patience_counter+=1 if patience_counter >= early_stopping_patience: print(f'Early stopping triggered at epoch {epoch}') with open(f'.{os.sep}models{os.sep}best_model_{train_dataset_hash}_on_{val_dataset_hash}.log','a') as f: f.write(f'epoch:{epoch},early stopping\n') break
|