| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 
 | import osimport pandas as pd
 
 from torch.utils.data import Dataset
 from torch.utils.data import DataLoader
 from PIL import Image
 from torchvision import transforms
 from sklearn.model_selection import train_test_split
 
 import torch.nn as nn
 import torch.optim as optim
 import torchvision.models as models
 
 from collections import Counter
 
 from tqdm import tqdm
 
 import torch
 
 import random
 import numpy as np
 
 import hashlib
 
 class KneeXRayDataset(Dataset):
 def __init__(self, dataframe, transform=None, cache_size=2000):
 self.df = dataframe
 self.transform = transform
 self.cache={}
 self.cache_size=cache_size
 
 def __len__(self):
 return len(self.df)
 
 def __getitem__(self, idx):
 if idx in self.cache:
 return self.cache[idx]
 
 row = self.df.iloc[idx]
 
 image = Image.open(row['img_path']).convert('RGB')
 label = int(row['KL'][0])
 
 image = self.transform(image)
 
 result=(image, label)
 
 if len(self.cache) < self.cache_size:
 self.cache[idx] = result
 
 return result
 
 if __name__ == '__main__':
 
 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
 print(f'device:{device}')
 
 seed=42
 random.seed(seed); np.random.seed(seed); torch.manual_seed(seed)
 if torch.cuda.is_available():
 torch.cuda.manual_seed_all(seed)
 
 exps={'MedicalExpert-I','MedicalExpert-II'}
 KL_levels={'0Normal','1Doubtful','2Mild','3Moderate','4Severe'}
 
 img_exp_KLs=[]
 for root, dirs, files in os.walk(f'.{os.sep}Digital Knee X-ray Images'):
 for name in files:
 if name.endswith('.png'):
 path_parts=set(root.split(os.sep))
 img_path=os.path.join(root, name)
 img_exp_KL=(img_path,(path_parts&exps).pop(),(path_parts&KL_levels).pop())
 img_exp_KLs.append(img_exp_KL)
 
 dataset_df = pd.DataFrame(img_exp_KLs,columns=['img_path','exp','KL'])
 
 dataset_df.sort_values(by='img_path',inplace=True)
 
 dataset_df['filename'] = dataset_df['img_path'].str.split(os.sep).str[-1]
 dataset_df_unique = dataset_df.drop_duplicates(subset=['KL','filename']).reset_index(drop=True)
 
 
 data_transform_train = transforms.Compose([
 transforms.Resize((224, 224)),
 transforms.RandomHorizontalFlip(),
 transforms.RandomRotation(15),
 transforms.ColorJitter(brightness=0.2, contrast=0.2),
 transforms.ToTensor(),
 transforms.Normalize(mean=[0.485, 0.456, 0.406],
 std=[0.229, 0.224, 0.225])
 ])
 
 data_transform_val = transforms.Compose([
 transforms.Resize((224, 224)),
 transforms.ToTensor(),
 transforms.Normalize(mean=[0.485, 0.456, 0.406],
 std=[0.229, 0.224, 0.225])
 ])
 
 
 X = dataset_df_unique
 y = dataset_df_unique['KL']
 
 X_train_val, X_test, y_train_val, y_test = train_test_split(
 X, y, test_size=0.2, random_state=seed, stratify=y)
 
 X_train, X_val, y_train, y_val = train_test_split(
 X_train_val, y_train_val, test_size=0.25, random_state=seed, stratify=y_train_val)
 
 class_counts=Counter(y_train)
 all_counts=len(y_train)
 class_weights={cls:all_counts/cnt for cls,cnt in class_counts.items()}
 class_weights=torch.tensor(list(class_weights.values()),dtype=torch.float32).to(device)
 
 train_dataset = KneeXRayDataset(dataframe=X_train, transform=data_transform_train)
 val_dataset = KneeXRayDataset(dataframe=X_val, transform=data_transform_val)
 test_dataset = KneeXRayDataset(dataframe=X_test, transform=data_transform_val)
 
 train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True,
 num_workers=4,pin_memory=True,persistent_workers=True)
 val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False,
 num_workers=4,pin_memory=True,persistent_workers=True)
 test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
 
 
 train_dataset_hash=hashlib.md5(''.join(X_train['filename'].to_list()).encode('utf-8')).hexdigest()
 val_dataset_hash=hashlib.md5(''.join(X_val['filename'].to_list()).encode('utf-8')).hexdigest()
 
 print(f'train_dataset_hash:{train_dataset_hash},val_dataset_hash:{val_dataset_hash}')
 
 
 model=models.resnet50(pretrained=True)
 num_ftrs = model.fc.in_features
 model.fc = nn.Linear(num_ftrs, 5)
 
 
 save_epoch=100
 latest_model_path=f'.{os.sep}models{os.sep}model_{train_dataset_hash}_epoch{save_epoch}.pth'
 while(os.path.exists(f'.{os.sep}models{os.sep}model_{train_dataset_hash}_epoch{save_epoch}.pth')):
 latest_model_path=f'.{os.sep}models{os.sep}model_{train_dataset_hash}_epoch{save_epoch}.pth'
 save_epoch+=100
 
 if os.path.exists(latest_model_path):
 model.load_state_dict(torch.load(latest_model_path,map_location=device))
 save_epoch-=100
 print(f'Loaded latest model from {latest_model_path}')
 else:
 save_epoch=1
 
 model.to(device)
 
 criterion = nn.CrossEntropyLoss(weight=class_weights)
 
 optimizer = optim.Adam(model.parameters(), lr=1e-5, weight_decay=1e-4)
 
 scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=10, factor=0.5, min_lr=1e-7)
 
 num_epochs = 2000
 
 print(f'Training for {num_epochs} epochs')
 
 best_val_loss=float('inf')
 
 early_stopping_patience = 50
 patience_counter = 0
 
 for epoch in range(save_epoch,num_epochs+save_epoch+1):
 model.train()
 running_loss = 0.0
 for inputs, labels in tqdm(train_loader, desc=f'Epoch {epoch}/{num_epochs}'):
 inputs, labels = inputs.to(device), labels.to(device)
 optimizer.zero_grad()
 outputs = model(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()
 running_loss += loss.item()
 
 model.eval()
 val_loss=0.0
 correct = 0
 total = 0
 with torch.no_grad():
 for inputs, labels in tqdm(val_loader, desc=f'Epoch {epoch}/{num_epochs}'):
 inputs, labels = inputs.to(device), labels.to(device)
 outputs = model(inputs)
 val_loss += criterion(outputs, labels).item()
 
 _, predicted = torch.max(outputs.data, 1)
 total += labels.size(0)
 correct += (predicted == labels).sum().item()
 
 epoch_val_loss = val_loss/len(val_loader)
 
 scheduler.step(epoch_val_loss)
 
 print(f"Epoch {epoch}/{num_epochs}, Loss: {running_loss/len(train_loader)}, Val Loss: {epoch_val_loss}, Val Accuracy: {100*correct/total}%, lr: {optimizer.param_groups[0]['lr']}")
 with open(f'.{os.sep}models{os.sep}best_model_{train_dataset_hash}_on_{val_dataset_hash}.log','a') as f:
 f.write(f"epoch:{epoch},train_loss:{running_loss/len(train_loader)},val_loss:{epoch_val_loss},val_acc:{100*correct/total}%,lr:{optimizer.param_groups[0]['lr']}\n")
 
 
 if (epoch) % 100 == 0:
 torch.save(model.state_dict(), f'.{os.sep}models{os.sep}model_{train_dataset_hash}_epoch{epoch}.pth')
 
 if epoch_val_loss < best_val_loss:
 best_val_loss = epoch_val_loss
 torch.save(model.state_dict(), f'.{os.sep}models{os.sep}best_model_{train_dataset_hash}_on_{val_dataset_hash}.pth')
 with open(f'.{os.sep}models{os.sep}best_model_{train_dataset_hash}_on_{val_dataset_hash}.log','a') as f:
 f.write(f'epoch:{epoch},saved best model\n')
 
 patience_counter=0
 else:
 patience_counter+=1
 
 if patience_counter >= early_stopping_patience:
 print(f'Early stopping triggered at epoch {epoch}')
 with open(f'.{os.sep}models{os.sep}best_model_{train_dataset_hash}_on_{val_dataset_hash}.log','a') as f:
 f.write(f'epoch:{epoch},early stopping\n')
 break
 
 |