1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
| import os
import re
from sklearn.model_selection import train_test_split
import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader
from torchvision.models.segmentation import fcn_resnet50 from torchvision.models.segmentation import FCN_ResNet50_Weights
from tqdm import tqdm
import torch
import random import numpy as np
import hashlib
import dataset
from sklearn.metrics import confusion_matrix
random_state = 42 random.seed(random_state); np.random.seed(random_state); torch.manual_seed(random_state) if torch.cuda.is_available(): torch.cuda.manual_seed_all(random_state)
batch_size = 8
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(f'device:{device}')
img_dir = 'FracAtlas/images/Fractured' mask_dir = 'FracAtlas/masks'
img_mask_names = sorted(os.listdir(img_dir))
X_train_val, X_test, y_train_val, y_test = train_test_split(img_mask_names, img_mask_names, test_size=0.2, random_state=random_state) X_train, X_val, y_train, y_val = train_test_split(X_train_val, y_train_val, test_size=0.25, random_state=random_state)
train_dataset = dataset.FracAtlasDataset(img_dir, mask_dir, X_train, dataset.get_transform(train=True)) val_dataset = dataset.FracAtlasDataset(img_dir, mask_dir, X_val, dataset.get_transform(train=False)) test_dataset = dataset.FracAtlasDataset(img_dir, mask_dir, X_test, dataset.get_transform(train=False))
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True, persistent_workers=True, collate_fn=train_dataset.collate_fn) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True, persistent_workers=True, collate_fn=val_dataset.collate_fn) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True, persistent_workers=True, collate_fn=test_dataset.collate_fn)
train_dataset_hash=hashlib.md5(''.join(X_train).encode('utf-8')).hexdigest() val_dataset_hash=hashlib.md5(''.join(X_val).encode('utf-8')).hexdigest() test_dataset_hash=hashlib.md5(''.join(X_test).encode('utf-8')).hexdigest() print(f'train_dataset_hash:{train_dataset_hash},val_dataset_hash:{val_dataset_hash},test_dataset_hash:{test_dataset_hash}')
model = fcn_resnet50(weights=FCN_ResNet50_Weights.DEFAULT, aux_loss=True)
model.classifier[4] = nn.Conv2d(512, 2, kernel_size=1, stride=1) model.aux_classifier[4] = nn.Conv2d(256, 2, kernel_size=1, stride=1)
save_epoch=10
saved_models = os.listdir(f'.{os.sep}models{os.sep}') saved_models = [model for model in saved_models if model.startswith(f'model_{train_dataset_hash}_on_{val_dataset_hash}_epoch')] saved_models_epochs = [int(model.split('_')[-1].split('.')[0].replace('epoch', '')) for model in saved_models] saved_models = zip(saved_models_epochs, saved_models) saved_models = sorted(saved_models, key=lambda x: x[0], reverse=True)
if len(saved_models) > 0: latest_model_path = f'.{os.sep}models{os.sep}{saved_models[0][1]}' model.load_state_dict(torch.load(latest_model_path,map_location=device)) load_epoch=saved_models[0][0] print(f'Loaded latest model from {latest_model_path}') else: load_epoch=0 print('No saved models found')
try: with open(f'.{os.sep}models{os.sep}log_{train_dataset_hash}_on_{val_dataset_hash}.log','r') as f: log_lines = f.readlines() except FileNotFoundError: log_lines = [] train_record_reg = re.compile(r'epoch:(\d+),train_loss:(\d+\.\d+),val_loss:(\d+\.\d+),val_acc:(\d+\.\d+)%,lr:(.+)')
lr_last = 1e-5 for i in range(len(log_lines)-1, -1, -1): matched_record = re.search(train_record_reg, log_lines[i]) if matched_record: if int(matched_record.group(1)) == load_epoch: lr_last = float(matched_record.group(5)) print(f'Using last lr: {lr_last}') break
best_epoch = 0 best_val_loss_avg_last=float('inf') for i in range(len(log_lines)-1, -1, -1):
if 'saved best model' in log_lines[i]:
for j in range(i, -1, -1): matched_record = re.search(train_record_reg, log_lines[j]) if matched_record: if int(matched_record.group(1)) > load_epoch: break else: best_epoch = int(matched_record.group(1)) best_val_loss_avg_last = float(matched_record.group(3)) print(f'Using last best val loss avg: {best_val_loss_avg_last}') break if best_val_loss_avg_last < float('inf'): break model.to(device)
def criterion(outputs, targets, train: bool = True): loss_main = nn.functional.cross_entropy(outputs['out'], targets)
if not train: return loss_main
return loss_main + 0.5 * nn.functional.cross_entropy(outputs['aux'], targets)
optimizer = optim.Adam(model.parameters(), lr=lr_last, weight_decay=1e-4)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.5, patience=10, min_lr=1e-7)
num_epochs_train = 1000
print(f"Training for {num_epochs_train} epochs")
best_val_loss_avg = best_val_loss_avg_last
early_stopping_patience = 50 patience_counter = max(0,load_epoch - best_epoch) if patience_counter > 0: print(f'Using last patience counter: {patience_counter}')
for epoch in range(load_epoch + 1, num_epochs_train + load_epoch + 1): model.train() running_loss = 0.0 for inputs, targets in tqdm(train_loader, desc=f'Epoch {epoch}/{num_epochs_train + load_epoch}'): inputs, targets = inputs.to(device), targets.to(device)
targets = targets.squeeze(1).long()
optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets, train=True) loss.backward() optimizer.step() running_loss += loss.item() model.eval() val_loss = 0.0 tn, fp, fn, tp = 0, 0, 0, 0 with torch.no_grad(): for inputs, targets in tqdm(val_loader, desc=f"Epoch {epoch}/{num_epochs_train + load_epoch}"): inputs, targets = inputs.to(device), targets.to(device)
targets = targets.squeeze(1).long()
outputs = model(inputs) val_loss += criterion(outputs, targets, train=False).item()
predicts = outputs['out'].argmax(dim=1)
predicts_flat = predicts.flatten().cpu().numpy() targets_flat = targets.flatten().cpu().numpy()
tn_batch, fp_batch, fn_batch, tp_batch = confusion_matrix(targets_flat, predicts_flat).ravel() tn += tn_batch fp += fp_batch fn += fn_batch tp += tp_batch
val_loss_avg = val_loss/len(val_loader)
scheduler.step(val_loss_avg)
print(f"Epoch {epoch}/{num_epochs_train + load_epoch}, Loss: {running_loss/len(train_loader):.3f}, Val Loss: {val_loss_avg:.3f}, Val Accuracy: {100*(tp+tn)/(tp+fp+fn+tn):.3f}%, lr: {optimizer.param_groups[0]['lr']}") print(f"Epoch {epoch}/{num_epochs_train + load_epoch}, Sensitivity(Recall): {tp/(tp+fn):.3f}, Specificity: {tn/(tn+fp):.3f}, Precision: {tp/(tp+fp):.3f}") with open(f'.{os.sep}models{os.sep}log_{train_dataset_hash}_on_{val_dataset_hash}.log','a') as f: f.write(f"epoch:{epoch},train_loss:{running_loss/len(train_loader)},val_loss:{val_loss_avg},val_acc:{100*(tp+tn)/(tp+fp+fn+tn)}%,lr:{optimizer.param_groups[0]['lr']}\n") f.write(f"epoch:{epoch},sensitivity(Recall):{tp/(tp+fn)},specificity:{tn/(tn+fp)},precision:{tp/(tp+fp)}\n")
if epoch % save_epoch == 0: torch.save(model.state_dict(), f'.{os.sep}models{os.sep}model_{train_dataset_hash}_on_{val_dataset_hash}_epoch{epoch}.pth')
if val_loss_avg < best_val_loss_avg: best_val_loss_avg = val_loss_avg torch.save(model.state_dict(), f'.{os.sep}models{os.sep}best_model_{train_dataset_hash}_on_{val_dataset_hash}.pth') print(f'epoch:{epoch},saved best model') with open(f'.{os.sep}models{os.sep}log_{train_dataset_hash}_on_{val_dataset_hash}.log','a') as f: f.write(f'epoch:{epoch},saved best model\n') patience_counter=0 else: patience_counter+=1 if patience_counter >= early_stopping_patience: print(f'Early stopping triggered at epoch {epoch}') with open(f'.{os.sep}models{os.sep}log_{train_dataset_hash}_on_{val_dataset_hash}.log','a') as f: f.write(f'epoch:{epoch},early stopping\n') break
|